Recent
and Selected Publications
I. Single Photon Source for Quantum Information Processing
II. Self-Assembled Quantum Dots and
Infrared Detectors __
III. Solar Energy Conversion using Novel
Hybrid Nanostuctures
IV. Biophysics, Bioengineering, and Nanomedicine
____ -Imaging of Cellular
Processes
____-Cellular Prostheses
V. Nanoparticle Manipulation on Surfaces
Single Photon Source for Quantum Information Processing
-
Q. Huang, L. Jordao, S. Lu, S. Chattaraj, J. Zhang, and A. Madhukar, "Large-Area
Spatially Ordered Mesa Top Single Quantum Dots: Suitable Single Photon Emitters for
On-Chip Integrated Quantum Information Processing Platforms." arXiv:2312.15132 (2023).
[CLICK HERE]
-
J. Zhang, S. Chattaraj, Q. Huang, L. Jordao, S. Lu, and A. Madhukar, "On chip scalable
highly pure and indistinguishable single photon sources in ordered arrays: Path to
Quantum Optical Circuits." Science Advances, 8.35, eabn9252 (2022).
[CLICK HERE]
-
J. Zhang, Q. Huang, L. Jordao, S. Chattaraj, S. Lu, and A. Madhukar, "Planarized spatially-regular arrays of spectrally uniform single quantum dots as on-chip single photon sources for quantum optical circuits." APL Photonics 5, 11, 116106 (2020).
[CLICK HERE]
-
S. Chattaraj, J. Zhang, S. Lu, and A. Madhukar. "On-Chip Integrated Single Photon Source-Optically Resonant Metastructure Based Scalable Quantum Optical Circuits." IEEE Journal of Quantum Electronics 56, 1, 1-9 (2019).
[CLICK HERE]
-
J. Zhang, S. Chattaraj, S. Lu, and A. Madhukar. "Highly pure single photon emission from spectrally uniform surface-curvature directed mesa top single quantum dot ordered array." Applied Physics Letters 114, 7, 071102 (2019).
[CLICK HERE]
-
Chattaraj, S., Zhang, J., Lu, S., & Madhukar, A. On-Chip Scalable Coupled Single Photon Emitter-All Dielectric Multifunctional Quantum Optical Circuits Working on a Single Collective Mie Resonance. arXiv preprint arXiv:1811.06652. (2018)
[CLICK HERE]
-
S. Chattaraj, J. Zhang, S. Lu, and A. Madhukar. "On-chip scalable coupled single photon emitter-all dielectric multifunctional quantum optical circuits working on a single collective Mie resonance." arXiv preprint arXiv:1811.06652 (2018).
[CLICK HERE]
-
S. Chattaraj, J. Zhang, S. Lu, and A. Madhukar. "Multifunctional Control of On-chip Generated Photons by a Single Collective Mode in Monolithically Integrated All-Dielectric Scalable Optical Circuits." arXiv preprint arXiv:1712.09700 (2017).
[CLICK HERE]
-
J. Zhang, S. Chattaraj, S. Lu and A. Madhukar,
"Mesa-top quantum dot single photon emitter arrays: Growth, optical characteristics, and the
simulated optical response of integrated dielectric nanoantenna-waveguide systems", J. Appl. Phys. 120, 243103 (2016).
[CLICK HERE]
-
J. Zhang, S. Lu, S. Chattaraj and A. Madhukar, "Triggered single photon emission up to 77K from ordered array of surface curvature-directed mesa-top GaAs/InGaAs single quantum dots", Optic Express 24, 29955(2016).
[CLICK HERE]
-
S. Chattaraj and A. Madhukar, "Multifunctional all-dielectric nano-optical systems using collective multipole Mie resonances: toward on-chip integrated nanophotonics", J. Opt. Soc. Am. B, 33, 2414(2016).
[CLICK HERE]
-
J. Zhang, S. Lu, Z. Lingley and A. Madhukar, “Nanotemplate-Directed InGaAs/GaAs Quantum Dots: Towards Single Photon Emitter Arrays”, J. Vac. Sci. Technol. B, 32, 02C106 (2014).
[CLICK
HERE]
- A. Konkar, A. Madhukar, and P. Chen "Creating
Three-Dimensionally Confined Nanoscale Strained Structures
via Substrate Encoded Size Reducing Epitaxy and the
Enhancement of Critical Thickness of Island Formation"
Mat. Res. Soc. Symp. Proc v 380 (1998) [CLICK
HERE]
- A. Konkar, A. Madhukar, and P. Chen, "Stress-engineered
spatially selective self-assembly of strained InAs quantum
dots on nonplanar patterned GaAs(001) substrates."
Applied Physics Letters 72, 220 (1998) [CLICK
HERE]
- K.C. Rajkumar, A. Madhukar, P. Chen, A. Konkar,
L. Chen, K. Rammohan, D.H. Rich, "Realization of
Three-Dimensionally Confined Structures via OneStep
In-Situ MBE on Appropriately Patterned GaAs (111)."
JVSTB 12 (2) 1071 (1994). [CLICK
HERE]
- A. Madhukar, "Growth of semiconductor heterostructures
on patterned substrates - defect reduction and nanostructures."
Thin Solid Films 231, 8 (1993). [CLICK
HERE]
- S. Guha, A. Madhukar, K. Kaviani, Li Chen, R. Kuchibholtla,
R. Kapre, M. Hyugachi, Z. Xie, "Molecular Beam
Epitaxical Growth of AlxGa1-xAs on Non-Planar Patterned
GaAs (100)" Mat. Res. Soc. Symp. Proc. v 145 (1989)
- M.A. Makeev and A. Madhukar,
"Stress Relaxation in Lattice-Mismatched Semiconductor
Overlayers on Patterned Substrates: Atomistic Simulation
Studies"in "Handbook of Semiconductor
Nanostructures and Nanodevices," Eds. A.A. Balandin
and K.L. Wang, American Scientific Publishers, vol X,
ch. 7 (2006)
- Maxim A. Makeev, and Anupam Madhukar, "Calculation
of Vertical Correlation Probability in Ge/Si(001) Shallow
Island Quantum Dot Multilayer Systems." Nano Letters,
6 , 1279 (2006) [CLICK
HERE]
- Maxim A. Makeev, Rajiv K. Kalia, Aiichiro Nakano,
Priya Vashishta, and Anupam Madhukar, "Effect of
geometry on stress relaxation in InAs/GaAs rectangular
nanomesas: Multimillion-atom molecular dynamics simulations."
Journal of Applied Physics, 98 , 114313 (2005) [CLICK
HERE]
- M. Makeev, W. Yu, and A. Madhukar, "Atomic
scale stresses and strains in Ge/Si(001) nanopixels:
An atomistic simulation study." Journal of Applied
Physics 96, 4429 (2004) [CLICK
HERE]
- M. Makeev, W. Yu, and A. Madhukar, "Stress
distributions and energetics in the laterally ordered
systems of buried pyramidal Ge/Si(001) islands: An atomistic
simulation study." Physical Review B 68, 195301
(2003) [CLICK
HERE]
- X. Su, R.K. Kalia, A. Nakano, P. Vashishta, and
A. Madhukar, "InAs/GaAs square nanomesas: Multimillion-atom
molecular dynamics simulations on parallel computers."
Journal of Applied Physics 94, 6762 (2003) [CLICK
HERE]
- M. Makeev and A. Madhukar, "Large-scale atomistic
simulations of atomic displacements, stresses, and strains
in nanoscale mesas: Effect of mesa edges, corners, and
interfaces." Applied Physics Letters 81, 3789 (2002)
[CLICK
HERE]
- M. Makeev and A. Madhukar, "Simulations of
Atomic Level Stresses in Systems of Buried Ge/Si Islands."
Physical Review Letters 86, 5542 (2001) [CLICK
HERE]
- X. Su, R.K. Kalia, A. Nakano, P. Vashishta, A.
Madhukar, "Million-atom molecular dynamics simulation
of flat InAs overlayers with Self-limiting thickness
on GaAs square nanomesas." Applied Physics Letters
78, 3717 (2001) [CLICK
HERE]
- X. Su, R.K. Kalia, A. Nakano, P. Vashishta, and
A. Madhukar, "Critical lateral size for stress
domain formation in InAs/GaAs square nanomesas: A multimillion-atom
molecular dynamics study." Applied Physics Letters
79, 4457 (2001) [CLICK
HERE]
- W. Yu and A. Madhukar, "Molecular Dynamics
Study of Coherent Island Energetics, Stresses, and Strains
in Highly Strained Epitaxy" Physical Review Letters
79, 905 (1997)
[CLICK HERE]
- A. Madhukar, W. Yu, R. Viswanathan, and P. Chen,
"Some Computer Simulations of Semiconductor Thin
Film Growth and Strain Relaxation in a Unified Atomistic
and Kinetic Model. Mat. Res. Soc. Symp. Proc. v 408
(1996)
Self-Assembled Quantum
Dots
1. Anupam Madhukar, "Stress Engineered Quantum
dots: Nature's Way," in "Nano Optoelctronics:
Concepts, Physics, and Devices", Ed. M. Grundmann,
Springer-Verlag, (Berline 2002).
2. I. Mukhametzhanov, Z. Wei, R. Heitz, and A. Madhukar,
"Punctuated island growth: An approach to examination
and control of quantum dot density, size, and shape
evolution." Applied Physics Letters 75, 85 (1999)
[CLICK
HERE]
3. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar,
and D. Bimberg, "Enhanced Polar Exciton-LO-Phonon
Interaction in Quantum Dots." Physical Review Letters
83, 4654 (1999) [CLICK
HERE]
4. I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and
A. Madhukar, "Independent manipulation of density
and size of stress-driven self-assembled quantum dots."
Applied Physics Letters 73, 1841 (1998) [CLICK
HERE]
5. R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar,
"Excitation transfer in self-organized asymmetric
quantum dot pairs."
Physical Review B 58, R10151 (1998) [CLICK
HERE]
6.Anupam Madhukar, "A unified atomistic and kinetic
framework for growth front morphology evolution and
defect initiation in strained epitaxy." Journal
of Crystal Growth 163, 149 (1996) [CLICK
HERE]
7. Q. Xie, A. Kalburge, P. Chen, and A. Madhukar, "Observation
of lasing from vertically self-organized InAs three-dimensional
island quantum boxes on GaAs(001)." IEEE Photonics
Technology Letters 8, 965 (1996) [CLICK
HERE]
8. N. P. Kobayashi, T. R. Ramachandran, P. Chen, and
A. Madhukar, "In situ, atomic force microscope
studies of the evolution of InAs three-dimensional islands
on GaAs(001)" Applied Physics Letters 68, 3299
(1996) [CLICK
HERE]
9. Q. Xie, A. Madhukar, P. Chen, and N. Nobayashi "Vertically
Self-Organized InAs Quantum Box Islands on GaAs (100)"
Physical Review Letters 75, 2542 (1995) [HIGHLY
CITED! CLICK HERE]
10. Q. H. Xie, P. Chenl, A. Madhukar, "InAs island-induced-strain
driven adatom migration during GaAs overlayer growth."
Applied Physics Letters 65, 2051 (1994). [CLICK
HERE]
Quantum Dot Infrared
Detectors
1. T. Asano, C. Hu, Y. Zhang, M. Liu, J.C. Campbell,
and A. Madhukar, "Design Consideration and Demonstration
of Resonant-Cavity-Enhanced Quantum Dot Infrared Photodetectors
in Mid-Infrared Wavelength Regime (3-5 micron)."
IEEE J. of Quantum Electronics, 46, 1484 (2010) [CLICK
HERE]
2. T. Asano, Z. Fang, and A. Madhukar, "Deep levels
in GaAs(001)/InAs/InGaAs/GaAs self-assembled quantum
dot structures and their effect of quantum dot devides."
J. of Applied Physics, 107, 073111 (2010) [CLICK
HERE]
3. T. Asano, A. Madhukar, K. Mahalingham, G.J. Brown,
"Dark current and band profiles in low defect density
thick multilayered GaAs/InAs self-assembled quantum
dot structures fro infrared detectors" J. Appl.
Phys, 104, 113115 (2008) [CLICK
HERE]
4. J. C. Campbell and A. Madhukar, "Quantum Dot
Infrared Detectors." IEEE Quantum Electronics,
95 (2007) [CLICK
HERE]
5. Anupam Madhukar and Joe C. Campbell, "Quantum
Dot Infrared Detectors" in "Semiconductor
Nanostructures for Optoelectronic Applications".
Ed. T. Steiner, Artec House Inc. (Norwood, MA) ch. 3.
(2004)
6. Z. Ye, J.C. Campbell, Z. Chen, E.T. Kim, and A.
Madhukar, "Noise and photoconductive gain in InAs
quantum-dot infrared photodetectors." Applied Physics
Letters 83, 1234 (2003) [CLICK
HERE]
7. E.T. Kim, Z. Chen, and A. Madhukar, "Selective
manipulation of InAs quantum dot electronic states using
a lateral potential confinement layer." Applied
Physics Letters 81, 3473 (2002) [CLICK
HERE]
8. E.T. Kim, Z. Chen, M. Ho, and A. Madhukar, "Tailoring
mid- and long-wavelength dual response of InAs quantum-dot
infrared photodetectors using InxGa1-xAs capping layers"
Journal of Vacuum Science and Technology B 20, 1188
(2002) [CLICK
HERE]
9. Z. Ye, J.C. Campbell, Z. Chen, E.T. Kim, and A.
Madhukar, "Voltage-controllable multiwavelength
InAs quantum-dot infrared photodetectors for mid- and
far-infrared detection." Journal of Applied Physics
92, 4141 (2002) [CLICK
HERE]
10. Z. Ye, J.C. Campbell, Z. Chen, E.T. Kim, and A.
Madhukar, "Normal-incidence InAs self-assembled
quantum-dot infrared photodetectors with a high detectivity."
IEEE Journal of Quantum Electronics 38 1234, (2002)
[CLICK
HERE]
11. Z.H. Chen, O. Baklenov, E.T. Kim, I. Mukhametzhanov,
J. Tie, A. Madhukar, Z. Ye, and J.C. Campbell, "InAs/AlxGa1-xAs
quantum dot infrared photodetectors with undoped active
region" Infrared Physics and Technology 42, 479
(2001) [CLICK
HERE]
12. E.T. Kim, Z. Chen, and A. Madhukar, "Tailoring
detection bands of InAs quantum-dot infrared photodetectors
using InxGa1-xAs strain-relieving quantum wells."
Applied Physics Letters 79, 3341 (2001) [CLICK
HERE]
Solar Energy Conversion
using Novel Hybrid Nanostuctures
1. Z. Lingley, S. Lu, and A. Madhukar "The dynamics of energy and charge transfer in lead sulfide quantum dot solids", Journal of Applied Physics, 115, 084302 (2014) [CLICK
HERE]
2. Z. Lingley, K. Mahalingam, S. Lu, G. J. Brown and A. Madhukar "Nanocrystal - Semiconductor Interface: Atomic-Resolution Cross-Sectional Transmission Electron Microscope Study of Lead Sulfide Nanocrystal Quantum Dots on Crystalline Silicon", Nano Research, 7, 219-227 (2014). [CLICK
HERE]
3. Z. Lingley, S. Lu. and A. Madhukar, "A High
Quantum Efficiency Preserving Approach to Ligand Exchange
on Lead Sulfide Quantum Dots and Interdot Resonant Energy
Transfer" Nano Lett., 11, 2887-2891 (2011) [CLICK
HERE]
4. S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz,
S. Guha, and A. Madhukar, " Photocurrent Induced
by Nonradiative Energy Transfer from Nanocrystal Quantum
Dots to Adjacent Silicon Nanowire Conducting Channels:
Towards a New Solar Cell Paradigm" Nano Lett.,
9 , 4548-4552 (2009) [CLICK
HERE]
5. S. Lu and A. Madhukar, "Nonradiative Resonant
Excitation Transfer from Nanocrystal Quantum Dots to
Adjacent Quantum Channels". Nano Letters, 7 (11),
3443 (2007) [CLICK
HERE]
6. A. Madhukar, S. Lu, A. Konkar, Y. Zhang, M. Ho,
S. M. Hughes and A. P.Alivisatos, "Integrated Semiconductor
Nanocrystal and Epitaxical Nanostructure Systems: Structural
and Optical Behavior." Nano Letters, 5 , 479 (2005)
[CLICK
HERE]
7. A. Konkar, S. Lu, A. Madhukar, S. M. Hughes and
A. P. Alivisatos, "Semiconductor Nanocrystal Quantum
Dots on Single Crystal Semiconductor Substrates: High
Resolution Transmission Electron Microscopy." Nano
Letters, 5 , 969 (2005) [CLICK
HERE]
Biophysics, Bioengineering,
and Nanomedicine: Imaging of Intracellular Dynamics
and Cellular Prostheses
1. S. Lu and A. Madhukar, “Inducing repetitive action potential firing in neurons via synthesized photoresponsive nanoscale cellular prostheses”, Nanomedicine Nanotechnology, Biology, and Medicine, 9, 293-301(2013).[CLICK
HERE]
2. J. K. Lee, S. Lu, and A. Madhukar, "Real-Time
Dynamics of Ca2+, Caspase-3/7, and Morphological Changes
in Retinal Ganglion Cell Apoptosis under Elevated Pressure."
PLoS ONE, 5, e13437 (2010) [CLICK
HERE]
3. S. Lu and A. Madhukar, "Cellular prostheses:
functional abiotic nanosystems to proble, manipulate,
and endow functions in live cells." Nanomedicine:
Nanotechnoloty, Biology, and Medicine, 6, 409-418 (2010)
[CLICK
HERE]
4. Siyuan Lu, Anubhuti Bansal, Walid Soussou, Theodore
W. Berger, and Anupam Madhukar, "Receptor-Ligand-Based
Specific Cell Adhesion on Solid Surfaces: Hippocampal
Neuronal Cells on Bilinker Functionalized Glass."
Nano Letters, 6 , 1977 (2006) [CLICK
HERE]
Nanoparticle
Manipulation on Surfaces
1. S. Meltzer, R. Resch, B.E. Koel, M.E. Thompson,
A. Madhukar, A.A.G. Requicha, and P. Will, "Fabrication
of nanostructures by hydroxylamine seeding of gold nanoparticle
templates." Langmuir 17, 1713 (2001) [CLICK
HERE]
2. Roland Resch, Christof Baur, Alejandro Bugacov,
Bruce E. Koel, Pierre M. Echternach, Anupam Madhukar,
Nicolas Montoya, Aristides A. G. Requicha, and Peter
Will, "Linking and Manipulation of Gold Multinanoparticle
Structures Using Dithiols and Scanning Force Microscopy."
Journal of Physical Chemistry B 103, 3647 (1999) [CLICK
HERE]
3. T R Ramachandran, C Baur, A Bugacov, A Madhukar,
B E Koel, A Requicha and C Gazen, "Direct and controlled
manipulation of nanometer-sized particles using the
non-contact atomic force microscope." Nanotechnology
9, 237 (1998) [CLICK
HERE]
Back to TOP
|